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Abstract

Recent years have seen increasing interest in and attention to evidence-based practices, where the 

“evidence” generally comes from well-conducted randomized trials. However, while those trials 

yield accurate estimates of the effect of the intervention for the participants in the trial (known as 

“internal validity”), they do not always yield relevant information about the effects in a particular 

target population (known as “external validity”). This may be due to a lack of specification of a 

target population when designing the trial, difficulties recruiting a sample that is representative of 

a pre-specified target population, or to interest in considering a target population somewhat 

different from the population directly targeted by the trial. This paper first provides an overview of 

existing design and analysis methods for assessing and enhancing the ability of a randomized trial 

to estimate treatment effects in a target population. It then provides a case study using one 

particular method, which weights the subjects in a randomized trial to match the population on a 

set of observed characteristics. The case study uses data from a randomized trial of School-wide 

Positive Behavioral Interventions and Supports (PBIS); our interest is in generalizing the results to 

the state of Maryland. In the case of PBIS, after weighting, estimated effects in the target 

population were similar to those observed in the randomized trial. The paper illustrates that 

statistical methods can be used to assess and enhance the external validity of randomized trials, 

making the results more applicable to policy and clinical questions. However, there are also many 

open research questions; future research should focus on questions of treatment effect 

heterogeneity and further developing these methods for enhancing external validity. Researchers 

should think carefully about the external validity of randomized trials and be cautious about 

extrapolating results to specific populations unless they are confident of the similarity between the 

trial sample and that target population.
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Recent years have seen increasing interest in and attention to evidence-based practices, 

where the “evidence” generally comes from well-conducted randomized controlled trials 

(RCTs). However, while those trials yield accurate estimates of the effect of the intervention 

for the people in the trial, they do not always yield relevant information about the effects in 

a target population, such as the population relevant for a particular policy decision. This may 

be due to a lack of specification of a target population when designing the trial, difficulties 

recruiting a sample that is representative of a pre-specified target population, or to interest in 

considering a target population somewhat different from the population directly targeted by 

the trial. Standard methods and designs generally do not easily allow for the generalization 

of treatment effects from an RCT sample to a target population different from the population 

directly represented by the trial. This trade-off is the traditional distinction of “internal 

validity” versus “external validity” (Shadish, Cook, & Campbell, 2002). There are of course 

many reasons that effects seen in trials may not carry over to other target populations, 

including implementation difficulties, measurement differences, or different settings 

(Shadish, Cook, & Campbell, 2002). However, answering questions about generalizability 

and external validity is crucial for making trial results applicable more broadly, for both 

clinical and policy questions.

Although researchers and policymakers have made important advances in our understanding 

of the processes for disseminating and implementing programs, less attention has been paid 

to estimating what the effects of the programs will be in populations somewhat different 

from those participating in the original RCTs of a particular program. Individuals or 

organizations that volunteer to participate in research may differ in a number of ways from 

those targeted through wide-scale implementations of “effective practices.” With a focus on 

prevention research, Flay et al. (2005) highlight the need to assess generalizability to 

establish evidence of effectiveness, but also acknowledge “The problem of generalizability 

remains an important area for scientific definition and investigation” (p. 164). In the current 

paper we discuss the conceptual issues associated with assessing the generalizability of RCT 

results, focusing on issues of external validity that may arise due to differences in the types 

of subjects participating in a trial and those in the target population.

More specifically, this paper discusses methods and diagnostics for investigating whether 

the effects seen in a trial would carry over to a population that may be somewhat different 

from the trial participants. This is a particularly important question for policymakers 

determining whether to recommend broad implementation of a particular program, and is 

especially relevant to prevention science. The methods also allow researchers and policy-

makers to take advantage of existing RCTs and population data in order to predict impacts in 

those populations. The motivating example, discussed further below, estimates what the 

effects would be if all schools in the state of Maryland implemented the school-wide 

behavior improvement program Positive Behavioral Interventions and Supports (PBIS). This 
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question is related to, but not the same as, questions of heterogeneous treatment effects 

(links between these issues will be discussed further below). It is important to note, 

however, that our methods do not assume that program effects are constant across the 

population. So while the overall question is whether a program should receive broad 

implementation, a positive result would not necessarily imply that the program will equally 

benefit everyone in the population. In this way it is also a somewhat different question from 

a desire to tailor interventions based on individual characteristics. These are important issues 

that require more research attention, but are beyond the focus of the current review, which 

aims to answer questions about broad implementation.

Issues Associated with Representativeness in Randomized Trials

There has been increasing attention paid to the fact that people in an RCT may differ from 

those who eventually get the program or treatment of interest, especially in areas related to 

mental health (e.g., Humphreys et al., 2007; Rothwell, 2005; Stirman et al., 2005; Westen, 

2006) and as highlighted in a recent Nature editorial (Nature, 2010). Braslow et al. (2005) 

found that few studies of psychiatric treatment enrolled representative samples and that in 

particular, minorities are often under-represented, and most studies do not address this 

limitation or even mention the representativeness of their samples in reports. Similarly, 

Wisniewski et al. (2009) found large differences between individuals enrolled in the 

STAR*D effectiveness trial and those who would have conceivably been enrolled in a more 

limited efficacy trial. However, there has been limited investigation into what to do about 

those differences, how to identify them, or how much they matter.

In addition, the topic of external validity has not been discussed as much in the social and 

behavioral sciences (with a few recent exceptions, including Olsen et al., 2013; 

O’Muircheartaigh & Hedges, 2014; Tipton, 2013). Some of the considerations may be quite 

different in different fields. For example, in medical contexts there are often many trials on 

the same topic, making research synthesis methods such as meta-analysis much more 

feasible than in the social and behavioral sciences, in which there are often only one or two 

trials of a particular program. Another distinction is that RCTs in the social and behavioral 

sciences (such as evaluations of educational interventions) often lack explicit inclusion and 

exclusion criteria, which may be due at least in part to a stronger focus on prevention–often 

universal prevention–programs. Generalizing results to subjects explicitly excluded from a 

trial requires specific methods (e.g., Pressler & Kaizar, 2013), and is not a topic we discuss 

further here.

Existing Methods for Assessing or Enhancing Generalizability

Existing methods for assessing or facilitating generalizability can be classified into two 

types: those related to the design of the trial, and after-the-fact analysis of the trial data.

Existing Study Design Strategies

The best way to ensure the generalizability of randomized trial results is to enroll a 

representative sample of subjects in the trial (Braslow et al., 2005). However, drawing a 

representative sample of subjects requires 1) knowing the population of interest in advance, 
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and 2) having a listing of, and access to, everyone in that population (and ideally with some 

characteristics observed on everyone in that population). Even when those criteria are met, 

random sampling from the population can be quite expensive, and, of course, works best 

when the selected subjects actually consent to participation. When selected subjects can 

decline to participate the benefits of having selected those subjects randomly may be lost 

(Shadish, 1995). In particular, the subjects that consent to be in an RCT may be quite 

different from the types of subjects that would implement a program once it is in general 

circulation, with some evidence of efficacy from that trial.

Random selection is thus most commonly used in large national evaluations of programs, 

where those programs are implemented in program sites. The program sites can then be 

selected randomly (although often with unequal probabilities of selection), and individuals 

within the selected sites randomized to treatment or control groups. This type of design is 

relatively rare (Olsen et al., 2013), but has been used in evaluations of Upward Bound (U.S. 

Department of Education, 2009), Head Start (U.S. Department of Health and Human 

Services, 2010), and Job Corps (Schochet, Burghardt, & McConnell, 2008).

Recent movement towards effectiveness trials carried out in real-world settings (Flay et al., 

2005) offers a step toward generalizability. Effectiveness trials often enroll a broader range 

of subjects than do more narrow efficacy trials, and are typically conducted in a broader 

range of settings. However, although effectiveness trials are likely more representative of a 

population of interest than are efficacy trials, there is still no guarantee that the effectiveness 

trial will enroll subjects representative of some target population of interest. Practical 

clinical trials, which are large-scale randomized trials that aim to enroll a representative 

population (e.g., Insel, 2006), are a further step toward generalizability, but those trials 

require considerable time and money.

A final design strategy for enrolling representative subjects is “purposive sampling.” 

Shadish, Cook, and Campbell (2002) describe two types: “heterogeneous” and “typical.” 

Heterogeneous purposive sampling aims to enroll a set of heterogeneous subjects, to reflect 

the range of units that are in the target population. In contrast, “typical” purposive sampling 

aims to enroll subjects who are typical (or “average”) in the population. However, most of 

the work describing purposive sampling has been fairly conceptual, without much guidance 

on actually carrying it out, and when used it tends to be in a relatively informal way. Tipton 

et al. (2014) provide one potential approach for formalizing the idea of purposive sampling, 

using a multivariate distance measure to ensure that a study sample looks similar to the 

target population on a set of observed characteristics. However, these design strategies are 

not sufficient if the target population is different from the target population of the original 

trial; the trial may have been designed for one particular purpose, but future decision makers 

may be interested in using the results from the trial to inform decisions regarding other 

target populations. The analysis methods described further below can be used even in that 

case.

Existing Study Analysis Strategies

There are also a number of analytic strategies that have been developed to assess population 

treatment effects after a trial (or more commonly, a set of trials) has been carried out. Some 
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of these strategies consist simply of documenting various factors related to generalizability. 

Others, including post-stratification, meta-analysis-related methods, and a reweighting 

approach (the method we will focus on in our motivating example below), actually aim to 

estimate population treatment effects.

One broadly known strategy for documenting factors that may affect the generalizability of 

study results is the “Reach Effectiveness Adoption Implementation Maintenance” (Re-AIM) 

framework by Green and Glasgow (2006). Re-AIM provides simple summary measures of 

external validity, covering a wide range of areas (such as the percentage of individuals who 

participate, measures of attrition, quality of implementation) but with relatively little focus 

on the particular issue considered in this paper—that of differences in the characteristics of 

individuals in a trial sample and a target population.

Post-stratification is arguably the most straightforward and most common way of estimating 

population-level treatment effects from a randomized trial. Post-stratification estimates 

subgroup-specific treatment effects in the trial and then averages them using population 

weights to generate an average effect across the population; Rosenbaum (1987) refers to this 

as “direct adjustment.” Post-stratification is commonly used in sample surveys as a way to 

calibrate the survey sample to population distributions (Holt & Smith, 1979); it has also 

been extended to estimating population-level effects. As a simple example, imagine the trial 

was 20% female and 80% male but the population of interest was 50/50. Post-stratification 

would take an equally weighted average of the male- and female-specific effect estimates 

from the trial as an estimate of what the effect would be in the population. The method is 

very straightforward but is limited in the number of variables for which adjustments can be 

made. For example, post-stratification cells can get very small even when trying to post-

stratify on basic demographics such as gender, race, ethnicity, and age groups. Tipton (2013) 

presents a way of combining post-stratification with propensity scores in order to adjust for 

a larger set of variables; that approach is highly related to the weighting-based methods 

discussed further below.

Another set of methods is useful when there are multiple studies available on a particular 

topic. These include meta-analysis, research synthesis approaches, and the confidence 

profile method. The main purpose of a meta-analysis is to combine results from multiple 

studies, often used in settings where multiple randomized trials have been done on roughly 

the same research question and population (Hedges & Olkin, 1985; Sutton & Higgins, 

2008). Meta-analysis typically takes just one result from each study, for example the 

treatment effect size, and combines those results across studies, either assuming that the 

effect sizes from the different studies are all estimating some common effect (a fixed effects 

model), or allowing variation in the effects across studies (a random effects model). A 

drawback of traditional meta-analysis is that it does not necessarily allow generalization of 

results to a target population, especially if the set of trials were all conducted on similar 

types of subjects, who may not be representative of the population. Traditional meta-

analysis puts relatively little focus on assessing how similar the individuals in the trials are 

to the target population.
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A broader class of methods, called research synthesis (or cross-design synthesis) involves 

similar ideas as meta-analysis, but is potentially more able to explicitly address the question 

of generalizability. Research synthesis enables the combination of results from randomized 

and non-randomized studies (Pressler & Kaizar, 2013; Prevost, Abrams, & Jones, 2000), and 

thus, for example, could combine information on program effects from a randomized trial 

with information from an observational study, which may contain a more representative 

sample (Imai et al., 2008). Research synthesis does this by modeling multiple parameters 

from each study and incorporating study characteristics into the model (e.g., Brown, Wang, 

& Sandler, 2008), including, for example, beliefs regarding the relative merits of the 

multiple sources of evidence (e.g., Turner et al., 2009). However, more work need is needed 

to fully investigate the potential use of research synthesis to answer the question of 

generalizability of interest in this paper, as estimating population effects are not always the 

explicit goal of these methods. For example, research synthesis approaches do not have 

formal ways of examining how similar subjects in a trial (or trials) are to individuals in a 

target population.

Some recent statistical approaches have more explicitly considered the question of how to 

estimate population-level treatment effects from randomized trial data. The most common 

strategies used are weighting approaches, which weight the trial subjects to resemble the 

population (e.g., Cole & Stuart, 2010; Stuart et al., 2011). Other researchers have examined 

similar approaches of weighting a sample to a population but only for the purpose of 

estimating population means, not causal effects (e.g., Pan & Schaubel, 2009). In the current 

paper, we propose that propensity scores (Rosenbaum & Rubin, 1983) can be used to 

summarize and assess the similarity of a randomized trial sample and a target population. 

This analytic approach provides a summary measure of the differences in the observed 

characteristics of the individuals in the trial and in the population. Then propensity score 

adjustment methods can be used to, first, examine how well those characteristics capture the 

differences between the sample and population, and then to estimate what the effects would 

be in the population. Below we apply this methodology to a group randomized controlled 

trial of a commonly used school-based prevention program, Positive Behavioral 

Interventions and Supports (PBIS)

Case Study: School-Wide Positive Behavioral Interventions and Supports

This work is motivated by an RCT of Positive Behavioral Interventions and Supports 

(PBIS), a school-wide non-curricular prevention framework that aims to improve school 

climate by creating improved systems and procedures that promote positive change in staff 

and student behaviors (Sugai et al., 2001). PBIS follows a 3-tiered public health approach to 

prevention, with a universal (school wide PBIS; SWPBIS) framework and more targeted 

(selective) and intensive (indicated) programs for students with higher need. To date most 

schools have focused on implementing the universal components of SWPBIS. Almost 

20,000 schools are currently implementing SWPBIS, and the National Technical Assistance 

center on SWPBIS is funded by the U.S. Department of Education Office of Special 

Education Programs (www.pbis.org). However, there have been relatively few studies of the 

effectiveness of SWPBIS, including just two randomized trials (Bradshaw et al., 2009; 

Horner et al., 2009).
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The current paper focuses on data from one of these trials, which was a group randomized 

effectiveness trial of SWPBIS (Murray, 1998), in which 37 Maryland elementary schools 

were randomized to receive SWPBIS or to be in a control condition (Bradshaw et al., 2009). 

Fidelity assessments indicated that schools in the PBIS condition in the trial implemented 

SWPBIS with high fidelity (Bradshaw et al., 2009). Follow-up of the participating schools 

over four years showed significant beneficial effects of PBIS on child behavior problems, 

including a reduction in office discipline referrals (ODRs), the outcome focused on in the 

current paper.

While there is interest in the immediate trial results, a relevant question for general policy is 

how effective SWPBIS is (or would be) across the state of Maryland (or the nation), not just 

in the 37 schools in the trial. Only public elementary schools in a limited number of school 

districts were eligible to participate in the trial, and all schools approached participated 

(Bradshaw, Waasdorp, & Leaf, 2012). However, observed factors that might limit the 

generalizablity of the trial results include the fact that the 37 trial schools had more children 

eligible for free or reduced price meals, less funding per pupil, and lower mathematics test 

scores as compared to all elementary schools in the state (Stuart et al., 2011). There is also 

some evidence of treatment effect heterogeneity in the trial, although primarily with respect 

to student-level characteristics such as students’ grade when SWPBIS was introduced in the 

school (Waasdorp et al., 2012).

Formal Setting and Analytic Expression for Bias

We first provide some notation to facilitate our discussion. We consider a setting where a 

randomized trial has been conducted to estimate the effect of a program, P, relative to a 

control condition on a sample of subjects. Let S be an indicator variable for whether a 

subject is in the trial sample. By “program” we mean any intervention of interest, whether 

preventive or a treatment for a particular disorder or disease. The subjects in the sample may 

be individuals or they may be at a higher level, such as communities or schools, as in the 

case of SWPBIS. In the trial the program has been randomly assigned to subjects in the 

sample, forming a program group and a control group that are only randomly different from 

each other on all background characteristics. Interest is in determining the effectiveness of 

the program in a target population, represented by Ω, where the set with S=1 is a subset of 

Ω. In the SWPBIS example, the sample consists of the 37 schools in the effectiveness trial; 

Ω consists of the 717 elementary schools in the state. We assume that for all subjects in Ω 

(or a representative sample of them) we observe a set of background characteristics X, 

which describe both the subjects themselves and their broader contexts.

Ultimate interest is in the effect of the program P in the population Ω on an outcome Y. For 

each subject i in Ω, two potential outcomes exist. One is the value of the outcome if subject i 

receives the program, denoted Yi (1). The other is the value of the outcome if subject i 

receives the control condition, denoted Yi (0). The effect of the program for subject i is 

defined as τi = Yi (1) − Yi (0). For each subject i we can never observe both potential 

outcomes. For subjects that receive the program we observe Yi (1) and Yi (0) is known as the 

“counterfactual.” The opposite holds for subjects that receive the control. While we thus 

cannot estimate subject-specific effects, it is possible to estimate the average effect for 
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groups of subjects. Averaging across all subjects in the population, the average effect of the 

program is , where NΩ is the number of subjects in the population. 

Imai, King, and Stuart (2008) call this the “Population Average Treatment Effect” (PATE) 

and this is our quantity of interest. Unfortunately, however, we cannot directly estimate the 

PATE, and in fact we may not observe Yi (1) or Yi (0) for many (or all) subjects in Ω. In the 

trial we observe Yi (1) for the subjects in the program group and Yi (0) for the subjects in the 

control group. From this data in the trial we can obtain an unbiased estimate of the average 

effect of the program in the sample: , where Ns is the number 

of subjects in the sample. This quantity is sometimes termed the “Sample Average 

Treatment Effect” (SATE).

The difference between SATE and PATE can give us an expression for the bias in using 

SATE as an estimate of PATE. Olsen et al. (2013) present a conceptual model for 

participation in randomized experiments and show that the external validity bias can be 

expressed as a function of three population quantities: BiasX = σΔcvPρΔP, where σΔ is a 

measure of the variability in treatment effects (in particular, their standard error) across the 

population, cvP is a measure of the variability in the probabilities of being in the sample 

(specifically, the coefficient of variation), and ρΔP is the correlation between the 

participation probabilities and treatment effects. The external validity bias is thus 0 if 

treatment effects do not vary (i.e., if there is no treatment effect heterogeneity), if the 

probabilities of participation do not vary, or if the probability of being in the sample is 

unrelated to treatment effect size. However, the bias will increase with more effect 

heterogeneity, more variability in the probability of participating, and higher correlations 

between those factors.

Under a particular form of the outcome model (a linear model) we can generate a more 

specific expression for the bias (Cole & Stuart, 2010). Assume a simple setting with 

outcome Y, treatment indicator T, binary covariate Z, and indicator S of being in the trial 

sample, where the treatment effect varies across levels of Z. In particular, let us assume an 

outcome model of the form E(Yi) = b0 + bT T + bZ Z + bTZ TZ. The parameter bTZ reflects 

the amount of treatment effect heterogeneity, with bT the treatment effect for individuals 

with Z=0 and bT+bTZ the treatment effect for individuals with Z=1. When bTZ=0 there is no 

effect heterogeneity and thus no bias when using the SATE as an estimate of the PATE. 

Cole and Stuart (2010) derive an expression for the external validity bias when using SATE 

as an estimate of PATE (i.e., when using the simple difference in means of the outcome 

between treatment and control groups in the trial sample [the SATE] as an estimate of the 

average difference in treatment and control potential outcomes in the population [the 

PATE]). They show that this bias can be written as 

. This expression shows that the bias is a 

function of 1) the extent of the effect heterogeneity across levels of Z, as measured by bTZ, 

2) the proportion of individuals in the sample (P(S=1)), 3) the prevalence of the 

heterogeneity characteristic Z in the population (P(Z=1)), and 4) the degree to which 
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participation in the trial is associated with Z, as measured by P(S=1|Z=1)-P(S=1). The bias 

is 0 if 1) the entire population is in the trial sample (P(S=1)=1), 2) there is no heterogeneity 

in Z (P(Z=1)=0), or 3) Z is unrelated to participation in the trial (P(S=1|Z=1)=P(S=1)). 

These latter two factors have obvious analogs in the Olsen et al. (2013) bias expression 

provided above.

Figure 1 examines this bias formula across a few settings, illustrating how the bias increases 

as a function of these parameters. In particular, the three scenarios in Figure 1 show the 

consequences of different values of P(S), the proportion of the sample that participates, 

P(Z), the prevalence of the heterogeneity parameter in the population, and P(S|Z), the 

relationship between the heterogeneity characteristic Z and participation, across a range of 

values of bTZ. The three panels vary in P(S) and P(Z), and each explores three values for the 

odds ratio of the relationship between participation in the trial (S) and the heterogeneity 

characteristic (Z).

A few points are evident from Figure 1. First, comparing the y-axes of the three panels 

(which are all on the same scale), the bias is much lower when P(S) is large (.8) than when it 

is small (.1), which is expected—the potential for bias is generally smaller if a larger 

proportion of the population is in the randomized trial sample. (However, we also note that 

P(S)=.8 is highly implausible for most real-world studies). Second, more heterogeneous 

treatment effects (larger values of bTZ ) increase the bias, as indicated by the positive slopes 

on all of the lines. Third, when S and Z are not strongly related (i.e., when participation in 

the trial is only weakly related to the heterogeneity characteristic), the bias is relatively small 

(the bottom lines on each panel). The weighting methods we propose below will be used to 

make the trial sample and population more similar with respect to Z, essentially trying to 

lower the odds ratio between S and Z to 1, and thus improving population treatment effect 

estimates.

Using Propensity Score Methods to Assess Generalizability

We now illustrate a method researchers can use to begin assessing the generalizability of 

their RCTs and estimate population treatment effects. This approach utilizes propensity 

scores, which are generally used for estimating causal effects in non-experimental settings 

(Rosenbaum & Rubin, 1983). Propensity scores in particular are used here to compare the 

subjects and contexts in the trial sample with those in the target population. The propensity 

score is typically defined as the probability of receiving some program (or “treatment”) 

versus a comparison condition, given a set of observed baseline characteristics. These 

characteristics may include both individual and contextual level variables. Propensity score 

matching can help ensure that the program and comparison subjects in a non-randomized 

study are as similar as possible. This is done by comparing groups of subjects with similar 

propensity scores, who, by virtue of the properties of the propensity score, will also have 

similar distributions of the observed background covariates (Rosenbaum & Rubin, 1983). In 

this way, propensity scores attempt to replicate a randomized experiment by comparing 

subjects across treatment conditions who have no systematic differences on the observed 

background characteristics. As explored by Cole and Stuart (2010) and Stuart et al. (2011), 

propensity score methods can also be used to examine the similarity of subjects in an RCT 
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sample and in a target population. Here, in order to summarize differences between the 

sample and population, the propensity score models membership in the RCT sample rather 

than receipt of the treatment, as is more common.

Propensity Scores as a Diagnostic—The first way in which propensity scores can be 

used is as a diagnostic to assess generalizability. Stuart et al. (2011) describe two diagnostic 

measures. The first is the average difference in propensity scores between the sample and 

population, divided by the standard deviation of the propensity scores. Like a discriminant 

function, due to the properties of the propensity score this provides the maximum difference 

in a linear combination of the covariates, giving researchers a one-number summary 

measure of the differences between a sample and a population, rather than requiring an 

examination of each covariate one at a time. Previous research on propensity scores has 

established 0.1 or 0.2 standard deviations as a difference that indicates unacceptable 

differences between the groups (in this case, the sample and the population), which would 

result in extrapolation and model dependence (Rubin, 2001; Stuart, 2010).

To estimate this quantity in the SWPBIS example we first fit a logistic regression model 

predicting participation in the trial as a function of the set of school characteristics in Table 

1. We then calculated the predicted probability of participating in the trial for each school in 

the state population. As our measure of similarity we take the difference in average 

predicted participation probabilities for those schools in the trial and those schools not in the 

trial divided by the standard deviation in the participation probabilities; this measure was 

0.73, indicating that the trial and population schools were nearly three quarters of a standard 

deviation apart. However, the real question is how well the observed characteristics capture 

the relevant differences between the trial and population schools. To investigate that, Stuart 

et al. (2011) compared the outcomes observed in the population schools not implementing 

SWPBIS to a weighted average of the outcomes in the control group of the randomized trial 

(who also were not implementing SWPBIS). If the observed characteristics adequately 

capture the differences between trial and population schools, the weighted control group 

mean should be similar to that observed in the population. (The details on these weights are 

provided below). In the SWPBIS example Stuart et al. (2011) found that, although the 

schools in the trial appear quite different on 3rd and 5th grade outcomes when not weighted, 

when weighted, the trial schools in the control group reflect what was happening statewide, 

especially for the 3rd grade measures.

Propensity Score Weighting to Estimate the PATE—We now extend Stuart et al. 

(2011) to obtain an estimate of the PATE, using methods similar to those in Cole and Stuart 

(2010). This uses a similar approach to the diagnostic described previously, but where both 

groups (treatment and control) are weighted to the population. The method is related to 

Horvitz-Thompson weighting in sample surveys (1952), in which surveyed individuals are 

weighted by their inverse probabilities of selection, and Inverse Probability of Treatment 

Weighting (IPTW), which is used in non-experimental studies to make the treatment and 

control groups comparable. In this context where the goal is to account for participation in 

the trial we refer to it as Inverse Probability of Participation Weighting (IPPW; Cole & 

Stuart, 2010). The crucial assumption underlying this approach is that the weight model 
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includes all variables that are associated with participation in the trial and that moderate 

treatment effects (Cole & Stuart, 2010; Stuart et al., 2011). In other words, that the observed 

characteristics are sufficient for generalizing treatment effects from the sample to the 

population. We also rely on a model of participation in the trial. The implications of these 

assumptions are discussed further below.

To estimate the PATE, we use the following procedure: 1) fit a model predicting 

participation in the RCT sample as a function of baseline characteristics, 2) define weights 

wi=1/pi, where pi is the probability that subject i is in the RCT, obtained from that fitted 

model, and 3) run a weighted regression model using the trial subjects and their weights wi. 

Step 3 essentially involves running the same analysis as is done to estimate the SATE in the 

trial, but now using the weights. (Note that in usual IPTW contexts the control group 

receives a weight of 1/(1−pi). In our context here, only the trial data is used for estimating 

the population treatment effect estimates (since that is where the treatment and outcome are 

observed), and so the only individuals in the analysis are those in the trial sample). The 

Appendix of Cole and Stuart (2010) provides a proof for the consistency of this approach for 

estimating the PATE.

We now apply this procedure to the SWPBIS example where we aim to estimate the 

population effect of SWPBIS on Office Disciplinary Referrals (ODRs). ODRs were 

measured using a question on the Teacher Observation of Classroom Adaptation-Checklist 

(TOCA-C; Koth, Bradshaw, & Leaf, 2009), a binary report of whether each student had 

received an ODR during that school year. This teacher-reported measure of ODRs has been 

shown to be a valid indicator, as compared with administrative data (Pas, Bradshaw, & 

Mitchell, 2011). The teacher-report measure was collapsed over the 5 time periods available 

to create a binary 0/1 variable for each student: ever vs. never received an ODR.

In particular, we first estimated a model of participation in the trial, using a dataset with one 

observation for every elementary school in the state of Maryland (N=717) and an indicator 

for the 37 schools in the SWPBIS trial. We then fit a logistic regression model of 

participation in the trial as a function of school characteristics (demographics and test 

scores), measured in 2002 (see Table 1). Each school in the trial was then given a weight of 

1/p, where p was the predicted probability from that logistic regression: their predicted 

probability of being in the trial. Table 1 investigates how well those weights work to make 

the trial and population schools look similar, showing the population means and the 

unweighted and weighted standardized mean differences comparing trial and population 

schools for all variables used in the propensity score model. The standardized mean 

difference for each variable is the (weighted or unweighted) difference in means, divided by 

the standard deviation. Commonly used in the propensity score literature to summarize the 

similarity of treatment and comparison groups, it can be used as a guide for whether groups 

are sufficiently similar for comparison. Table 1 shows that, after weighting, all standardized 

mean differences are below the 0.2 cutoff frequently used as an indication of sufficient 

similarity in the propensity score literature (Stuart, 2010).

To estimate treatment effects we used these IPTW weights in a logistic regression model 

predicting ODRs as a function of treatment status (SWPBIS vs. not), student, and school 
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characteristics, fit among the schools in the trial. For this we use student-level data and 

account for the clustering of students within schools using a multilevel (random effects) 

model. Because schools were the unit of participation for the trial, and thus the weights are 

at the school level, we run the model with the weights set at the school level (Level 2). The 

model controlled for the same student-level (grade cohort, gender, ethnicity, special 

education status, eligible for Free or Reduced Price Meals) and school-level (student 

mobility, student/teacher ratio, enrollment, faculty turnover) characteristics as in Bradshaw 

et al. (2012). The weights were calculated in the R software package (R Core Team, 2013) 

and the multilevel models were run using the gllamm procedure (Rabe-Hesketh, Skrondal, 

& Pickles, 2004) for Stata 12 (StataCorp, 2011).

In an unweighted model that estimates the SATE, the estimated effect of PBIS on ODRs 

was an odds ratio of 0.64 (95% CI: .55, 75; p=.00). (The SATE estimate is slightly different 

from that in Bradshaw et al. (2012, Table 6) because of slight estimation differences; 

Bradshaw et al. (2012) fit models in HLM (Raudenbush et al., 2011), while we used gllamm 

because we had easier access to gllamm. For reference, Bradshaw et al. (2012) reported an 

odds ratio of 0.66 (p < .01). The weighted estimate, estimating the PATE, was similar: 0.61 

(95% CI: .53, .71; p=.00). The PATE point estimate is just slightly attenuated, but both the 

SATE and PATE indicate a reduction in ODRs for students in schools implementing 

SWPBIS. The similarity in odds ratios is likely in part a function of the lack of evidence of 

heterogeneity in treatment effects of the SWPBIS intervention on ODRs (Bradshaw et al., 

2012). Using the weights allows us to estimate what the effects of SWPBIS would be if 

implemented statewide, accounting for the differences in observed characteristics between 

the schools in the trial and those statewide.

Conclusions

This paper presents one of the first formal discussions of external validity in the prevention 

science literature. As studies aiming to estimate causal effects become more and more 

rigorous in terms of their internal validity, and sometimes with respect to external validity 

for the original target population, we can now start thinking about ways to generalize those 

trial results to more formal, or slightly different, target populations. In particular, as interest 

increases in dissemination and implementation of prevention and treatment programs, it is 

more important than ever to understand how well existing studies might inform policy 

decisions in other contexts and locations, among varying populations. Other applications 

include contexts where the types of individuals in the target population change, for example, 

as more individuals become eligible for health insurance, thus changing the types of 

individuals seeking services.

A limitation of the existing work is that it can only account for differences between a sample 

and population in characteristics that are observed in the trial sample and the target 

population. In the SWPBIS trial many characteristics are observed on the schools in the trial 

(e.g., school climate), but in our statistical adjustments we were limited to only those 

characteristics also observed on all schools across the state, which consists primarily of 

demographics and test scores. In this example we found that the estimated population effects 

are similar in magnitude to the impacts estimated in the RCT. This may in part be because 

Stuart et al. Page 12

Prev Sci. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



there is limited evidence of treatment effect heterogeneity in the trial; specifically, Table 6 

of Bradshaw et al. (2012) shows no variation in effects on ODRs across grade cohorts or 

special education status. Although there was some evidence of variation by gender, gender 

was a variable on which there was little variation across schools, and thus the trial and state 

schools are already well matched on that factor. The theory of the intervention leads us to 

believe that we likely measured the characteristics that may moderate treatment effects (e.g., 

school size, percent of students eligible for Title 1). However, other potentially important 

variables (such as principal’s support for the program) are not observed on schools 

statewide. In addition, although evidence from the two existing RCTs provides information 

about the overall effectiveness of SWPBIS, little is known about whether treatment effects 

vary as a function of school characteristics, in part due to limited statistical power. Future 

work should further investigate whether program effects vary (and across which factors, 

both individual-level and contextual), and account for those factors when assessing external 

validity. The current paper also only considers pre-treatment factors that may moderate 

effects; additional work should consider how changes in factors such as take-up or 

participation rates might affect population treatment effects (e.g., Frangakis, 2009). Critical 

for assessing generalizability to a target population is identifying that population and having 

data on that population. In the SWPBIS example we had access to data on the population of 

Maryland schools. In other cases such extensive data is not available. However, methods 

such as those used in Cole and Stuart (2010) can be used to generate a pseudo-population 

using just the cross-tabulation of a few key covariates; in Cole and Stuart (2010) the 

population data available was simply the age by sex by race distribution in the target 

population. This also highlights the need for high quality population-level datasets that can 

be used to characterize potential target populations.

Methods for assessing and enhancing external validity are just beginning to be developed 

and thus, there are many directions for future research. In particular, much of the discussion 

around external validity rests on understanding treatment effect heterogeneity and what 

factors moderate treatment effects. If there is no effect heterogeneity the sample treatment 

effect can be assumed to generalize to the population (since then effects are constant across 

everyone); however, existing trials provide relatively little information regarding the extent 

of treatment effect heterogeneity. Especially given the limited power in most RCTs for 

detecting effect modification, new statistical methods are needed to help identify whether 

effects vary, and over what factors. Another question for future research is which 

characteristics to prioritize when equating the sample and the target population; the 

propensity score weighting used here prioritizes characteristics by how predictive 

characteristics are of participation in the trial (through the logistic regression of participation 

in the trial as a function of the characteristics). Another possibility would be to prioritize 

variables by how predictive they are of treatment effects, or of outcomes (e.g., using 

prognostic scores; Hansen, 2008). Finally, especially when the target population is very 

large and diverse (e.g., from the Census), or if the sample and population differ 

substantially, there is the potential for very large weights, which can cause poor performance 

of the weighting. This issue has been investigated in the context of propensity score 

weighting in non-experimental studies (Kang & Schafer, 2007), and should be examined in 

the generalizability context as well, where it may be an even larger concern. However, some 
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of the lessons from the standard IPTW context (such as weight trimming or standardization) 

may be able to be carried over to this new setting. These represent important directions for 

further statistical research.

RCTs provide unbiased estimates of the treatment effect in the sample at hand. However, 

often decision makers and policy makers are actually interested in what the treatment effect 

would be in some other, target, population. Existing methods and study designs are 

somewhat limited in their ability to estimate the effects in a target population. We hope that 

this paper prompts more discussion of these issues and helps researchers pay more attention 

to the issue of generalizing treatment effects from one sample to a target population.

Acknowledgments

Funding Source: Support for this project comes from grants from the Centers for Disease Control and Prevention 
(R49/CCR318627, 1U49CE 000728, and K01CE001333), the National Institute of Mental Health (1R01MH67948; 
K25 MH083846), and the Institute of Education Sciences (R305A090307).

References

Bradshaw CP, Koth CW, Thornton LA, Leaf PJ. Altering school climate through school-wide positive 
behavioral interventions and supports: Findings from a group-randomized effectiveness trial. 
Prevention Science. 2009; 10(2):100–115. [PubMed: 19011963] 

Bradshaw CP, Waasdorp TE, Leaf PJ. Effects of school-wide positive behavioral interventions and 
supports on child behavior problems. Pediatrics. 2012; 130(5):1136–1145. [PubMed: 23129082] 

Braslow JT, Duan N, Starks SL, Polo A, Bromley E, Wells KB. Generalizability of studies on mental 
health treatment and outcomes, 1981–1996. Psychiatric Services. 2005; 56(10):1261–1268. 
[PubMed: 16215192] 

Brown CH, Wang W, Sandler I. Examining how context changes intervention impact: The use of 
effect sizes in multilevel mixture meta-analysis. Child Development Perspectives. 2008; 2(3):198–
205. [PubMed: 20585469] 

Cole SR, Stuart EA. Generalizing evidence from randomized clinical trials to target populations: The 
ACTG-320 trial. American Journal of Epidemiology. 2010; 172:107–115. [PubMed: 20547574] 

Flay BR, Biglan A, Boruch RF, Castro FG, Gottfredson D, Kellam S, Mościcki EK, Schinke S, 
Valentine JC, Ji P. Standards of evidence: Criteria for efficacy, effectiveness, and dissemination. 
Prevention Science. 2005; 6(3):151–175. [PubMed: 16365954] 

Frangakis CE. The calibration of treatment effects from clinical trials to target populations. Clinical 
Trials. 2009; 6:136–140. [PubMed: 19342466] 

Green LW, Glasgow RE. Evaluating the relevance, generalization, and applicability of research: Issues 
in external validation and translation methodology. Evaluation & the Health Professions. 2006; 
29:126–153. [PubMed: 16510882] 

Hansen BB. The prognostic analogue of the propensity score. Biometrika. 2008; 95:481–488.

Hedges, LV.; Olkin, I. Statistical methods for meta-analysis. Orlando, FL: Academic Press; 1985. 

Holt D, Smith TMF. Post stratification. Journal of the Royal Statistical Society, Series A. 1979; 
142(1):33–46.

Horner RH, Sugai G, Smolkowski K, Eber L, Nakasato J, Todd AW, Esperanza J. A randomized, wait-
list controlled effectiveness trial assessing school-wide positive behavior support in elementary 
schools. Journal Positive Behavior Interventions. 2009; 11(3):133–144.

Horvitz D, Thompson D. A generalization of sampling without replacement from a finite universe. 
Journal of the American Statistical Association. 1952; 47:663–685.

Humphreys K, Weingardt KR, Harris AHS. Influence of subject eligibility criteria on compliance with 
national institutes of health guidelines for inclusion of women, minorities, and children in 
treatment research. Alcoholism: Clinical and Experimental Research. 2007; 31(6):988–995.

Stuart et al. Page 14

Prev Sci. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Imai K, King G, Stuart EA. Misunderstandings between experimentalists and observationalists about 
causal inference. Journal of the Royal Statistical Society Series A. 2008; 171:481–502.

Insel TR. Beyond efficacy: The STAR*D trial. American Journal of Psychiatry. 2006; 163:5–7. 
[PubMed: 16390879] 

Kang JD, Schafer JL. Demystifying double robustness: A comparison of alternative strategies for 
estimating a population mean from incomplete data. Statistical Science. 2007; 22(4):523–539.

Koth CW, Bradshaw CP, Leaf PJ. Teacher observation of classroom adaptation-checklist: 
Development and factor structure. Measurement and Evaluation in Counseling and Development. 
2009; 42(1):15–30.

Murray, DM. Design and analysis of group-randomized trials. New York: Oxford Press; 1998. 

Nature. Editorial: Putting gender on the agenda. Nature. 2010; 465(7299):665.

Olsen R, Bell S, Orr L, Stuart EA. External validity in policy evaluations that choose sites purposively. 
Journal of Policy Analysis and Management. 2013; 32(1):107–121. [PubMed: 25152557] 

O’Muircheartaigh C, Hedges LV. Generalizing from unrepresentative experiments: A stratified 
propensity score approach. Journal of the Royal Statistical Society, Series C, Applied Statistics. 
2014 Early view online. 10.1111/rssc.12037

Pan Q, Schaubel DE. Evaluating bias correction in weighted proportional hazards regression. Lifetime 
Data Analysis. 2009; 15:120–146. [PubMed: 18958616] 

Pas E, Bradshaw CP, Mitchell MM. Examining the validity of office discipline referrals as an indicator 
of student behavior problems. Psychology in the Schools. 2011; 48(6):541–555.

Pressler TR, Kaizar EE. The use of propensity scores and observational data to estimate randomized 
controlled trial generalizability bias. Statistics in Medicine. 201310.1002/sim.5802

Prevost TC, Abrams KR, Jones DR. Hierarchical models in generalized synthesis of evidence: An 
example based on studies of breast cancer screening. Statistics in Medicine. 2000; 19(24):3359–
3376. [PubMed: 11122501] 

R Core Team. R: A language and environment for Statistical Computing. Vienna, Austria: R 
Foundation for Statistical Computing; 2013. Retrieved from the R project website: http://www.R-
project.org

Rabe-Hesketh S, Skrondal A, Pickles A. Generalized multilevel structural equation modelling. 
Psychometrika. 2004; 69(2):167–190.

Raudenbush, SW.; Bryk, AS.; Cheong, YF.; Congdon, RT., Jr; du Toit, M. Hierarchical linear and 
nonlinear modeling (HLM7). Lincolnwood, IL: Scientific Software International, Inc; 2011. 

Rosenbaum PR. Model-based direct adjustment. Journal of the American Statistical Association. 1987; 
82(398):387–394.

Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal 
effects. Biometrika. 1983; 70(1):41–55.

Rothwell PM. External validity of randomised controlled trials: “To whom do the results of this trial 
apply? Lancet. 2005; 365(9453):82–93. [PubMed: 15639683] 

Rubin DB. Using propensity scores to help design observational studies: Application to the tobacco 
litigation. Health Services & Outcomes Research Methodology. 2001; 2:169–188.

Schochet PZ, Burghardt J, McConnell S. Does job corps work? Impact findings from the national job 
corps study. American Economic Review. 2008; 98(5):1864–86.

Shadish WR. The logic of generalization: Five principles common to experiments and ethnographies. 
American Journal of Community Psychology. 1995; 23(3):419–428.

Shadish, WR.; Cook, TD.; Campbell, DT. Experimental and quasi-experimental designs for 
generalized causal inference. Boston, MA: Houghton Mifflin Company; 2002. 

StataCorp. Stata Statistical Software: Release 12. College Station, TX: StataCorp LP; 2011. 

Stirman SW, Derubeis RJ, Crits-Christoph P, Rothman A. Can the randomized controlled trial 
literature generalize to nonrandomized patients? Journal of Consulting and Clinical Psychology. 
2005; 73(1):127–35. [PubMed: 15709839] 

Stuart EA. Matching methods for causal inference: A review and a look forward. Statistical Science. 
2010; 25(1):1–21. [PubMed: 20871802] 

Stuart et al. Page 15

Prev Sci. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org
http://www.R-project.org


Stuart EA, Cole S, Bradshaw CP, Leaf PJ. The use of propensity scores to assess the generalizability 
of results from randomized trials. Journal of the Royal Statistical Society Series A. 2011; 174(2):
369–386.

Sugai, G.; Horner, R.; Gresham, F. Behaviorally effective school environments. In: Shinn, M.; Stoner, 
G.; Walker, H., editors. Interventions for academic and behavior problems: Preventive and 
remedial approaches. Silver Spring, MD: National Association of School Psychiatrists; 2001. p. 
315-350.

Sutton AJ, Higgins JP. Recent developments in meta-analysis. Statistics in Medicine. 2008; 27(5):625–
650. [PubMed: 17590884] 

Tipton E. Improving generalizations from experiments using propensity score subclassification: 
Assumptions, properties, and contexts. Journal of Educational and Behavioral Statistics. 2013; 
38(3):239–266.

Tipton E, Hedges LV, Vaden-Kiernan M, Borman GD, Sullivan K, Caverly S. Sample selection in 
randomized experiments: A new method using propensity score stratified sampling. Journal of 
Research on Educational Effectiveness. 2014; 7(1):114–135.

Turner RM, Spiegelhalter DJ, Smith GCS, Thompson SG. Bias modelling in evidence synthesis. 
Journal of the Royal Statistical Society, Series A. 2009; 172(1):21–47.

U.S. Department of Education. The Impacts of Regular Upward Bound on Postsecondary Outcomes 
Seven to Nine Years After Scheduled High School Graduation. Washington, D.C: Office of 
Planning, Evaluation and Policy Development, Policy and Program Studies Service; 2009. 

U.S. Department of Health and Human Services. Head Start Impact Study Final Report. Washington, 
D.C: Office of Planning, Evaluation and Policy Development, Administration for Children and 
Families, Policy and Program Studies Service; 2010. 

Waasdorp TE, Bradshaw CP, Leaf PJ. The impact of Schoolwide Positive Behavioral Interventions 
and Supports on bullying and peer rejection. Archives of Pediatric and Adolescent Medicine. 
2012; 166(2):149–156.

Westen, DI.; Stirman, SW.; DeRubeis, RJ. Are Research Patients and Clinical Trials Representative of 
Clinical Practice?. In: Norcross, JC.; Beutler, LE.; Levant, RF., editors. Evidence-based practices 
in mental health: Debate and dialogue on the fundamental questions. Washington, DC: American 
Psychological Association; 2006. p. 161-189.

Wisniewski S, Rush A, Nierenberg A, Gaynes B, Warden D, Luther J, McGrath PJ, Lavori PW, Thase 
ME, Fava M, Trivedi MH. Can phase III trial results of antidepresseant medications be generalized 
to clinical practice? A STAR*D report. American Journal of Psychiatry. 2009; 166(5):599–607. 
[PubMed: 19339358] 

Stuart et al. Page 16

Prev Sci. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Bias in estimating the Population Average Treatment Effect using a randomized trial sample 

when there is effect heterogeneity and the probability of participation in the trial is related to 

the characteristic driving treatment effects. P(S) denotes the probability of participation in 

the trial; P(Z) refers to the prevalence of a characteristic related to treatment effects and 

participation, P(S|Z=1) (and the related quantity reflecting the odds ratio between S and Z, 

OR(S,Z)) reflects the degree of association between the heterogeneity characteristic Z and 

participation S, and b_TZ reflects the degree of association between Z and treatment effects, 

as expressed in the form of the outcome model: E(Yi) = b0 + bT T + bZ Z + bTZ TZ.

Stuart et al. Page 17

Prev Sci. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Stuart et al. Page 18

Table 1

Characteristics of schools in PBIS trial and those in state population

School characteristic Mean in Trial Mean in Population

Unweighted 
Standardized 

Difference in Means
Weighted Standardized 

Difference in Means

Attendance rate 95.3 95.3 0.02 0.06

Enrollment 485 480 0.03 0.07

% students eligible for Free or Reduced 
Price Meals

39.7 36.3 0.12 −0.07

% students in special education 13.8 15.1 −0.09 −0.13

% students eligible for Title 1 47.3 27.4 0.47 −0.02

% students White 60.3 54.1 0.18 0.11

3rd grade math 27.4 31.9 −0.22 −0.06

3rd grade reading 32.9 34.5 −0.08 0.02

5th grade math 44.6 51.0 −0.21 −0.11

5th grade reading 54.2 53.3 0.04 −0.03

% students suspended 6.3 4.6 0.33 0.18

N 37 717

Note: Weighted means reflect IPTW weighting of schools in trial. Standardized difference in means refers to difference in means (trial minus 
population) divided by standard deviation. Test score variables reflect the % of students scoring Proficient or Advanced on the Maryland state 
standardized test. All variables measured in 2002, before the trial began.
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